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Abstract

On-line optimization provides a means for maintaining a process near its optimum operating conditions by providing set points to the
process’s distributed control system (DCS). To achieve a plant-model matching for optimization, process measurements are necessary.
However, a preprocessing of these measurements is required since they usually contain random and—less frequently—gross errors. These
errors should be eliminated and the measurements should satisfy process constraints before any evaluation on the process. In this paper, the
importance and effectiveness of simultaneous procedures for data reconciliation and gross error detection is established. These procedures
depending on the results from robust statistics reduce the effect of the gross errors. They provide comparable results to those from methods
such as modified iterative measurement test method (MIMT) without requiring an iterative procedure. In addition to deriving new robust
methods, novel gross error detection criteria are described and their performance is tested. The comparative results of the introduced methods
are given for five literature and more importantly, two industrial cases. Methods based on the Cauchy distribution and Hampel’s redescending
M-estimator give promising results for data reconciliation and gross error detection with less computation.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Real time on-line optimization provides set points to the
process’s distributed control system (DCS) and therefore
maintains the process near its optimum operating conditions.
This optimization requires an accurate process model and
reconciled process data. The process model is a set of in-
equality and equality constraints and describes the funda-
mental relationship of process units, such as material and
energy balances, rate equations and equilibrium relations.
Reconciled process data is used to specify the current status
of the plant model and for estimation of the model parame-
ters for plant-model matching.

Data reconciliation adjusts process measurements with
random errors by having them satisfy material and energy
balance constraints and is a way to improve the quality of the
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measurements taken from a process via DCS or any other
means of data collection.

The elimination of the less frequent gross errors is
achieved by gross error detection. Therefore, simultaneous
data reconciliation and gross error detection have emerged
as a key part of on-line optimization.

Since the first proposed solution to the steady-state data
reconciliation problem (Kuehn & Davidson, 1961) a vast
body of chemical engineering literature has been developed
describing many other approaches. Besides the solution of
the linear and nonlinear problem using matrix projection
(Crowe, 1986; Crowe, Garcia Campos, & Hyrmak, 1983),
a solution of the nonlinear data reconciliation problem via
successive linearization is described (Knepper & Gorman,
1980; Veverka & Madron, 1997). Liebman and Edgar (1988)
demonstrated that using nonlinear programming instead of
successive linearization remarkably improved reconciliation
results.Tjoa and Biegler (1991)showed that using nonlin-
ear programming along with a method based on a contam-
inated Normal (Gaussian) objective function instead of the
least squares objective function, any gross error present in
the measurements could be replaced with reconciled values,
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and an iterative procedure was not required. By establish-
ing an analogy between maximum likelihood rectification
(MLR) and robust regression,Johnston and Kramer (1995)
reported the feasibility and better performance of the robust
estimators as the objective function in the data reconciliation
problem especially when the data contain gross errors. Sub-
sequently, different types of robust estimators and their per-
formance in data reconciliation were reported (Albuquerque
& Biegler, 1996; Arora & Biegler, 2001). These studies have
shown the potential of robust statistics developed byHuber
(1981), which attempts accurate estimation of statistical pa-
rameters in the presence of gross errors.

However, the simultaneous approach for data reconcilia-
tion along with the gross error detection using the results
from robust statistics has been employed to solve problems
of small size (6–12 equality constraints) except for (Chen,
Pike, & Hertwig, 1998) and (Jordache, Ternet, & Brown,
2001). Moreover, the derivation of some other robust objec-
tive functions and their comparative performance have not
been studied. In this paper, these issues are addressed along
with the derivation and performance evaluation of different
gross error detection criteria with and without dependence
on the objective function used. Most importantly, the pre-
sented methods are employed on two industrial plants; the
petroleum refinery alkylation process and the contact pro-
cess for sulfuric acid production.

2. General formulation

A data reconciliation problem begins with the acquisition
of the process data measurements. To assess the performance
of the process evaluation or control,

xT = [x1, x2, x3, . . . , xn]

is a set of system variables for which sensors are available
to measure their state.

The result of a measurement session (data from the DCS)
can be collected in a set of measurement vectors as follows

yT
i = [yi,1, yi,2, . . . , yi,li ] for i = 1,2,3, . . . , n

whereli is the number of sets of measurements taken during
steady-state plant operation to estimate the system variable
xi. li is equal to one if we are interested in the snapshot of the
process and is greater than one if our concern is a smoothed
average within a time window of interest.

If there were no gross errors in the system, the difference
of the measured values and the system state would have a
distribution around the mean zero, i.e.

yi,1 − xi, yi,2 − xi, yi,3 − xi, . . . , yi,li − xi

is a sample from a distribution with mean zero. Also, the
unknown variance of this distribution can be estimated by
using plant’s historical data.

The states of the system variables are determined by us-
ing the constraints that describe the process. Therefore, us-
ing a proper objective function in an NLP, estimates of the
xi’s can be obtained which are expected to minimize these
differences.

The formulation for the data reconciliation problem with
the generalized least squares method has its root in the gen-
eral regression model. Let us define a single measurement
of the ith measured variable at thejth steady state asyi,j.
The kth fixed regressor (explanatory or independent) vari-
able that we believe to explain the variation between each
steady state is calledzk,j. Then a linear regression problem
with fixed regressors using generalized least squares estima-
tion is posed as:

min
J∑

j=1

(yi,j − θ0 − θ1z1,j · · · − θkzk,j)
2

σ2
j

(1)

for which the regression model is stated as:

yi,j = θ0 + θ1z1,j · · · + θkzk,j + εj,

E(εj) = 0, Var(εj) = σ2
j ∀j (2)

An estimate for the location of the steady state can be cal-
culated using a special case of the linear regression prob-
lem described above, wherek = 0 and the sum is over the
steady-state pointsl.

min
li∑

l=1

(yi,l − θ0)
2

σ2
i,l

(3)

The corresponding regression model is

yi,l = θ0 + εi,l, E(εi,l) = 0, Var(εi,l) = σ2
i,l ∀l

(4)

The minimization problem (3) can also be written as

min
li∑

l=1

(yi,l − xi,l)
2

σ2
i,l

such thatxi,1 = xi,2 = · · · = xi,li = θ0

(5)

Formulation (5) is equivalent to (6)

min
li∑

l=1

(yi,l − xi,l)
2

σ2
i,l

such thatAxi = 0,

A((li − 1) × li) =




1 −1 0 . 0

0 . . . 0

0 . . . 0

0 . 1 −1 0

0 . . 1 −1




(6)

If the measured values are standardized with their true val-
ues and standard deviations, they are pragmatically assumed
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to be random variables from the same distribution (univari-
ate) with zero mean and unit deviation. Then similar to (6),
but with a general matrixA for the linear case, additional
constraints, andli = 1, data reconciliation problem can be
stated as:

min
n∑

i=1

(yi,1 − xi,1)
2

σ2
i,1

such that

Ax = 0,

A is the process matrix

Lb ≤ x ≤ Ub

(7)

Formulation (7) can be further generalized to include the
unmeasured variables (u) and nonlinear process model con-
straints (f, g), which is frequently used in the data reconcil-
iation literature.

min(y − x)Q−1(y − x) such that

g(x, u) ≥ 0

f(x, u) = 0

Lbx ≤ x ≤ Ubx

Lbu ≤ u ≤ Ubu

whereQ = diag[σ2
1,1, σ

2
2,1, . . . , σ

2
n,1]

(8)

An optimumxi (calledx∗
i ) to the problem (8) is expected

to result in the differences

y1 − x∗
1, y2 − x∗

2, y3 − x∗
3, . . . , yn − x∗

n

from a distribution with zero mean.
A fundamental method to determine whether the mea-

surements are from a distribution with zero mean is apply-
ing hypothesis testing withH0 being “µ is 0” andH1 being
“µ is not equal to 0”, whereµ denotes the mean. The test
statistic for this procedure is

t = Ê(yi − x∗
i ) − 0√

V̂ (yi − x∗
i )

(9)

whereÊ is an estimate for the expected value of (yi−x∗
i ) and

V̂ is an estimate for the variance. This test statistic inEq. (9)
is the basis of classical gross error detection procedures. If a
particular probability distribution function can be assumed
for t, larger t values will describe less likely instances and
provide proof for the truth of the hypothesis H1, i.e. the
existence of a gross error (outlier).

3. Definition and comparison of different objective
functions for data reconciliation

Different objective functions besides the weighted least
squares (WLS) in (8) can be used for data reconciliation.
The WLS objective function assumes measurement errors
from a distribution with zero mean and known variance. For

any possible deviation from this assumption, another objec-
tive function, which does not require this assumption, can
be a better candidate. This is especially the case when the
measurements contain some gross errors. A gross error in a
measured variable causes “smearing”, contaminating the es-
timates for other measured variables. Increasing the break-
down point of the data reconciliation method used can reduce
“smearing”. The breakdown point for location estimators is
defined as “the smallest fraction of free contamination that
can carry the estimated value beyond all bounds” (Hampel,
1985)and is close to zero for weighted least squares method.
In other words, even a single measurement with gross error
is enough to invalidate the basis of WLS method causing
“smearing”.

Objective functions with better breakdown points can be
found from Normal-like distribution functions with heavy
tails or combining two distributions to account for the con-
tamination caused by the outliers (gross errors), e.g. contam-
inated Normal distribution. Similar to Gauss’s development
of the Normal distribution function for residuals into the
weighted least squares objective function (Deutsch, 1965),
maximum likelihood functions can be utilized to derive these
objective functions.

A maximum likelihood function is formed from the prob-
ability distribution function of the measured variablexi, by
maximizing the product of individual probability values for
each measured variable.

maxP = max
∏
i

Pi (10)

For the Normal distribution, the product in (10) becomes

max
∏
i

Pi = max
∏
i

{
1√

2πσi

exp

(
− (yi − xi)

2

2σ2
i

)}

or min−
∑
i

ln

{
exp

(
− (yi − xi)

2

2σ2
i

)}
+
∑
i

ln(
√

2πσi)

or min
∑
i

(yi − xi)
2

2σ2
i

(11)

which is equivalent to the weighted least squares objective
function. Similarly, for contaminated Normal distribution
function, this product becomes

max
∏
i

Pi = max
∏
i

{
(1 − pi)

1√
2πσi

exp

(
− (yi − xi)

2

2σ2
i

)

+ pi

1√
2πbiσi

exp

(
− (yi − xi)

2

2b2
i σ

2
i

)}
(12)

or

min −
∑

ln

{
(1 − pi)exp

(
− (yi − xi)

2

2σ2
i

)

+ pi

bi
exp

(
− (yi − xi)

2

2b2
i σ

2
i

)}
+
∑
i

ln(
√

2πσi)
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where pi is the probability andb2
i σ

2
i the variance of the

contamination by a gross error.
For Logistic distribution, function (10) becomes

max
∏
i

Pi = max
∏
i

{
1

σi

exp((yi − xi)/σi)

(1 + exp((yi − xi)/σi))2

}
or

min
∑
i

{
2 ln

(
1 + exp

(
(yi − xi)

σi

))

−
(
(yi − xi)

σi

)
+ ln σi

}
(13)

and finally, for the Cauchy (Lorentz) distribution, the max-
imum likelihood objective function becomes

max
∏
i

Pi = max
∏
i

{
1

πσi(1 + (yi − xi)2/σ
2
i )

}
or

min
∑
i

{
ln(πσi) + ln

(
1 + (yi − xi)

2

σ2
i

)}

(14)

The generalized maximum likelihood objective function,
proposed by Huber (Huber, 1981)has the form

min
∑
i

ρ

(
yi − xi

σi

)
(15)

i.e. any reasonable monotone function,ρ, of εi = (yi −
xi)/σi, the standard error, can be used for the data recon-
ciliation formulation, provided that the gross errors have a
reduced effect on the estimation of measured process vari-
ables. Therefore, the three maximum likelihood objective
functions for contaminated Normal, Cauchy and Logistic
distributions—with the proper tuning parameters—can be
used without assuming the underlying measurement error
probabilities. In addition, Fair function, “Lorentzian” func-
tion and Hampel’s redescending M-estimator are three other
robust generalized maximum likelihood objective functions
that can be employed in the data reconciliation formula-
tion. Among these three functions, Fair function was con-
structed using a combination of ordinary-least squares for
small residuals and least-absolute residual (LAR) for large
residuals (Fair, 1974), whereas “Lorentzian” function was
introduced byJohnston and Kramer (1995)and Hampel’s re-
descending M-estimator by Hampel (Andrews et al., 1972).

In classical estimation literature, a location (mean) es-
timation of a sample from a univariate distribution is cal-
culated byEq. (3). A robust estimate of the location can
be obtained by changing the objective function inEq. (3)
with a robust function, such as a generalized maximum
likelihood estimator (M-estimator). The efficiency of these
estimators is defined (up to a common factor) as the in-
verse of the variance of the final estimate under the ideal
model distribution, which is traditionally chosen as the Nor-
mal distribution (Hampel, 1985). If a rejection rule is im-
posed, the efficiency is calculated using the variance in the

location estimates calculated after outlier values are elim-
inated from the sample. If a smaller critical value is used
for rejection, the power of the rejection rule (similar to
gross error detection) increases; however, the variance of
the estimate, if there are actually no outliers in the sam-
ple, increases. This loss of efficiency is called “insurance
premium” and can be used to “tune” the estimators with
parameters. This tuning by efficiency values is necessary
if one desires to compare the performance of differentρ

functions and eventually the rejection rules designed on
them.

The consequence of this tuning requirement is that in data
reconciliation and gross error detection the performance of
two differentρ functions can be compared properly only for
(nearly) equal efficiency cases. This means that, for instance,
Fair function with 95% efficiency can be compared with
95% efficient Hampel’s redescending M-estimator.

Theρ functions that we studied are as follows:

WLS

1
2ε

2
i (16)

Contaminated Normal

−ln

{
(1 − pCN)exp

(
−ε2

i

2

)
+ pCN

bCN
exp

(
− ε2

i

2b2
CN

)}

(17)

Cauchy

c2
C ln

(
1 + ε2

i

c2
C

)
(18)

Logistic

2 ln

(
1 + exp

(
εi

cLo

))
−
(

εi

cLo

)
(19)

“Lorentzian”

− 1

1 + (ε2
i /2c2

L)
(20)

Fair

2c2
F

[ |εi|
cF

− ln

(
1 + |εi|

cF

)]
(21)

Hampel’s redescending M-estimator

1
2ε

2
i , 0 ≤ |εi| ≤ aH

aH|εi| − 1
2a

2
H, aH < |εi| ≤ bH

aHbH − a2
H

2
+ (cH − bH)

a2

2

[
1 −

(
cH − |εi|
cH − bH

)2
]
,

bH < |εi| ≤ cH

aHbH − 1
2a

2
H + (cH − bH)

1
2a

2, cH < |εi|
(22)
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Table 1
Tuning constants for differentρ functions with efficiency values 95.5%

ρ function Tuning constants

Contaminated Normal bCN = 10, pCN = 0.235
Cauchy cC = 2.3849
Logistic cLo = 0.602
“Lorentzian” cL = 2.6
Fair cF = 1.3998
Hampel aH = 1.35, bH = 2.7, cH = 5.4

To compare the data reconciliation and gross error de-
tection performance of theseρ functions, they were first
standardized by properly tuning their parameters. Some
functions have their tuning constants given as a function
of asymptotic efficiency such as the Fair and Cauchy func-
tions. However, these asymptotic variances “give only crude
indications for the actual variances” for finite sample size
(Hampel, 2002). Therefore, approximate finite sample vari-
ances and consecutively relative efficiencies were calculated
by simulation and Monte Carlo studies (Hampel, 1985;
Andrews et al., 1972). We performed a similar study for the
aboveρ functions with a sample size of 28 and 2000 sim-
ulation runs that resulted in the following tuning constant
values (efficiency values are approximately 95.5%) given
in Table 1.

Fig. 1 depicts individual standardizedρ functions in the
objective function, showing that Fair and Logistic functions
cases result in a convex objective function. The convexity
of the objective function guarantees the global optimality
of the nonlinear data reconciliation problem for a process,
which can be described by only linear constraints.

Methods to measure the robustness of an estimator involve
the use of the influence function, IF (Hampel, Ronchetti,
Rousseeuw, & Stahel, 1986), which is defined for a sample
x, an estimatorT over an assumed distribution functionF
and a perturbed distribution functionFt as follows:

IF(x, T, F) = lim
t→0

T(Ft) − T(F)

t
= ∂

∂t
[T(Ft)]|t=0 (23)

The heuristic interpretation of this influence function is that
“it describes the effect of an infinitesimal contamination at
the pointx on the estimate” (Hampel et al., 1986). Since
the influence function is proportional to the derivative of the
maximum likelihood function, the weight given to any gross
error in the measurements while calculating the estimates
can be seen inFig. 2 (seeAppendix A for details).

The influence function for WLS is proportional to the
measurement error (derivative ofEq. (12)) justifying the low
breakdown point and unbounded effect of large errors. The
effect of larger errors is reduced for theρ function of the
Cauchy distribution, “Lorentzian” function and Hampel’s
redescending M-estimator, shown by gradually decreasing
influence functions in the region of greater than 3.0 of the
standard error. Therefore, these threeρ functions are called
redescendingρ functions. Fair function and theρ function
of the Logistic distribution have a bounded influence by the

large errors since their influence function increases slowly
with respect to the measurement errors approaching a con-
stant value for large errors. The influence of small measure-
ment errors on theρ function of the contaminated Normal
distribution is the same as on the WLS; however, the influ-
ence decreases for larger errors and becomes proportional
to very large errors after passing through a minimum (at
standard error 4.7 inFig. 2).

Collectively, methods with influence functions which re-
main bounded as the standard error increases, should be
insensitive to gross errors when data reconciliation is con-
ducted with them.

4. Obtaining different gross error detection criteria

“Statistically, a gross error is an error whose occurrence as
realization of a random variable is highly unlikely” (Veverka
& Madron, 1997). Therefore, the hypothesis testing ap-
proach to detect these unlikely occurrences works very well,
provided that the measurement errors come from a known
probability distribution. In other words, an advantage of hav-
ing an underlying distribution function for the measurement
errors (including the gross errors) is that the rejection of the
gross errors can be performed using confidence level orα

values. A measurement value which probably occurs less
than (α×100)% of the time can be detected as a gross error.
This way the measurements with higher errors can be elim-
inated with a certainty of (1− α). The value beyond which
the measurements are considered as gross errors is called a
cut point. The cut points for four distribution functions are
given inTable 2.

Rejection of the gross errors by employing the hypothesis
testing approach can give misleading results if the a priori
assumption about the measurement error distribution is vi-
olated. Moreover, rejection criteria for the cases without a
priori probability distribution functions can not be defined
systematically.

Alternative definitions of possible rejection criteria have
been proposed in the literature. For instance, the rejection
criterion proposed byFarris and Law (1979)for the con-
taminated Normal distribution function case is equivalent to
defining the cut point (xc) as

max{P(the measurement is larger thanxc and is an outlier)

−P(the measurement is larger thanxc and is not an outlier)}

Table 2
Cut points for four distribution functions atα = 0.03

Probability
distribution function

(mean, variance) Cut points for
α = 0.03

Normal (0, 1) ±2.16
Contaminated Normal 0.235 (0, 100)+

0.765 (0, 1)
±15.2

Logistic (0, 1) ±4.2
Cauchy (0, 1) ±21.0
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Fig. 1. Individual ρ functions in the objective function compared with weighted least squares objective (rhoL: “Lorentzian” , rhoF: Fair function, rhoCN:
contaminated Normal distribution, rhoC: Cauchy distribution, rhoLo: Logistic distribution, rhoH: Hampel’ s redescending M-estimator).

This cut point falls on the descending part of the influence
function (Fig. 3). By examining the first and second deriva-
tives of the influence function, additional cut points can be
defined systematically, for instance, the minimum, maxi-
mum and inflection points of the influence functions can
become possible candidates. Choosing a smaller cut point
(critical value) can improve the gross error detection but will

also increase the false detection and the variance of the es-
timates under the ideal condition, i.e. if there are no gross
errors in the measurements.

For the ρ functions such as Fair function, and the ρ func-
tion for the Logistic distribution, the cut points can not be
found using this procedure, because their influence functions
do not have single maximum, minimum of inflection points.
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Fig. 2. Relative influence of the errors in the measurement to the objective function (WLS: weighted least squares, CN: contaminated Normal).

However, provided that the functions have same efficiencies,
the cut points for redescending ρ functions prove as rea-
sonable cut point candidates for these “non-redescending”
ρ functions.

An alternative rejection rule, which is based on the ro-
bust median and median deviation, has the code name
X84 (Hampel et al., 1986). This rule rejects the mea-
surements, for which the residuals after the data rec-
onciliation are more than 5.2 median deviations away
from the median of the residuals. The median devia-
tion (median absolute deviation) is the median of the
absolute residuals from the median. This rule does not
have a predetermined and ρ-function-dependent cut point.
Therefore, it can be used with any ρ function described
above.

In the following section, the performance of these differ-
ent gross error detection criteria is evaluated with numerical
experiments.

5. Examples

Numerical experiments for data reconciliation and gross
error detection reported in literature have been applied to
relatively small plant simulation problems, and there are
few cases where results for industrial examples are given
(Chen et al., 1998; Jordache et al., 2001; Sanchez, Sentoni,
Schbib, Tonelli, & Romagnoli, 1996; Weiss, Romagnoli, &
Islam, 1996). In this study, both small simulation and actual
plant examples are solved, and their results are compared.
We have compared the performance of weighted least
squares, the modified iterative measurement test method
(MIMT) and ρ functions for the contaminated Normal
(CN), Cauchy (C) and Logistic (Lo) distributions, along
with “Lorentzian” (L), Fair function (F) and Hampel’ s
redescending M-estimator (H).

For each method, three different gross error detection cri-
teria are tested except for the MIMT method. The summary
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Fig. 3. Influence function for the ρ function of contaminated Normal distribution and five different cut points for gross error detection (first marker:
maximum of the influence function (2.131), (�): inflection point of the first derivative of the influence function (2.42), (�) Farris–Law criteria (2.65),
(�) inflection point of the influence function (2.92); second marker: another inflection point of the first derivative of the influence function (3.34)).

of each criterion for different methods is given in Table 3.
Data reconciliation and gross error detection using MIMT
are performed as described in Kim, Kang, Park, and Edgar
(1997).

Performance measures to evaluate different gross error
detection criteria employed are the overall power (OP):

OP = Number of gross errors correctly identified

Number of gross errors simulated
(24)

and average number of Type I errors (AVTI) (Narasimhan
& Jordache, 2000).

AVTI = Number of gross errors wrongly identified

Number of simulation trials made
(25)

Average and median total error reductions (TER) (Serth,
Valero, & Heenan, 1987) are used to compare the data val-
idation performance of different methods, where xti is the

Table 3
Methods and their gross error detection criteria

Method Gross error detection criteria

WLS Cut points at α = 0.05, α = 0.025 and X84
CN Cut points from influence function (2.131, 3.34)

and X84
Cauchy Cut points from influence function (2.385, 4.131)

and X84
Logistic Same as CN
“Lorentzian” Cut points from influence function (2.123, 3.658)

and X84
Fair Same as CN
Hampel’ s M Cut points from influence function (2.131, 3.34)

and X84
MIMT Cut point at α = 0.05

true value for the ith measured variable.

TER =
√∑n

i=1((yi − xti)/σi)2 −
√∑n

i=1((x
∗
i − xti)/σi)2√∑n

i=1((yi − xti)/σi)2

(26)

Performance test procedure for the examples with known
true values of the measured variables consists, in general, of
the following steps.

1. Using true values such as design data, measurement sets
are created for each variable by adding noise from Nor-
mal and Cauchy distributions with equal probability, i.e.
half of the simulated measurement errors has a Nor-
mal probability distribution and the other half are from
Cauchy probability distribution. Therefore, the assump-
tion that the random errors have a particular probability
distribution, is relaxed.

2. Add gross errors to measurements depending on the per-
centage of gross error occurrence.

3. Solve data reconciliation problem for each of the eight
methods.

4. Using different gross error detection criteria calculate the
performance measures for each method, i.e. calculate OP
and AVTI.

5. Calculate total error reduction for each method as a per-
formance measure for the data reconciliation if the true
values are given, i.e. calculate TER.

All models for the examples and random number gen-
eration for the Monte Carlo simulations are implemented
in GAMS (Brooke, Kendrick, & Meeraus, 1992). The data
reconciliation formulations are solved with the NLP solvers
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CONOPT2 and MINOS5. In the first five examples, the
piece-wise linear Hampel’ s redescending M-estimator is
modeled as an external function coded in the programming
language C and called by GAMS (Kalvelagen, 2002). For
the last two problems, these discontinuities are smoothed
as described in Arora and Biegler (2001). All calculations
for the performance measures and the gross error detection
rule X84 are implemented with Perl.

5.1. Examples from literature

The methods presented above are tested first on examples
used in various literature articles in the last three decades.
Two of these examples (Examples 1 and 2) contain linear
and the remaining three (Examples 3-5) nonlinear process
models. Except in Example 5, the lower bounds on the vari-
ables are set to 50% of the true values and the upper bounds
to twice the true values. In Example 5, the lower bounds for
all variables are 50% of the true values whereas the upper
bounds are set to 150% of the true values.

Example 1 (Ripps, 1965). This example involves a simple
chemical reactor with two entering and two leaving mass
flows. All four variables are measured in the system, and they
are related by three linear mass balance equations (Ripps,
1965; Romagnoli & Sanchez, 2000). For the Monte Carlo
study, random measurements are created from Normal and
Cauchy distributions as outlined above. Outliers were cre-
ated in 10% of the measurements randomly by adding or
subtracting 10–100% of the true values. With the exceptions
of the Hampel’ s redescending M-estimator and MIMT, all
runs were executed independently and with the same initial
conditions. For MIMT, all consecutive runs were initiated
with the resulting values of the previous run. Hampel’ s re-
descending M-estimator converged to an inferior optimal if
it was not initialized with the results from Cauchy distribu-
tion ρ function or Fair function method.

The results of Monte Carlo study runs for each method
are shown in Table 4. The ρ function of the Cauchy distribu-

Table 4
Performance of different methods for Example 1

MIMT H WLS CN Cauchy L Fair Logistic

Number of runs 650 506 506 506 506 506 506 791
Total GE 253 213 213 213 213 213 213 240
Runs with GE 212 183 183 183 183 183 183 211
OP (GED #1) 0.775 0.817 0.930 0.897 0.894 0.784 0.911 0.896
AVTI (GED #1) 0.363 0.500 0.636 0.397 0.292 0.536 0.504 0.458
OP (GED #2) – 0.765 0.911 0.859 0.784 0.676 0.751 0.808
AVTI (GED #2) – 0.462 0.581 0.322 0.213 0.429 0.362 0.322
OP (GED #3) – 0.512 0.333 0.531 0.596 0.460 0.484 0.512
AVTI (GED #3) – 0.176 0.146 0.182 0.198 0.213 0.174 0.187
Mean TER 0.736 0.625 0.676 0.751 0.775 0.658 0.696 0.718
Median TER 0.915 0.878 0.836 0.906 0.923 0.892 0.901 0.894

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number
(i = 1, 2, 3 for first and second cut points and rule X84, respectively).

tion shows the best performance with second highest over-
all power and lowest average number of Type I errors if the
first cut point at 2.385 is used. Rule X84 seems to be con-
servative for this example, and the factor 5.2 can be reduced
to improve the results. The comparison of the data recon-
ciliation performance shows that ρ function of the Cauchy
distribution is the most effective one among other methods
with 77.5% mean and 92.3% median total error reduction.
Median TER indicates that 50% of the TER values are above
0.923.

Since the problem has only four measured variables, a
special attention to the breakdown point is necessary. The
highest breakdown point achievable is 50% (Rousseeuw &
Leroy, 1987) which corresponds to two gross errors (outliers)
in this case. Therefore “smearing” can occur if the example
is solved with two or more gross errors.

Example 2 (Serth and Heenan, 1986). Our second example
considers a steam metering system with 28 variables (all
measured) and 12 linear equations. The measured values are
created using the correct flow rates Serth and Heenan (1986)
and 25% of the observations have gross errors ranging from
10 to 100% of the true values.

The results in Table 5 show that modified MIMT has the
best performance in data reconciliation with highest mean
and median total error reduction. It also possesses the low-
est average number of Type I errors in 1000 simulation runs.
Cauchy distribution ρ function also performs well, consid-
ering that it requires a single NLP solution whereas MIMT
requires seven iterations on the average.

Example 3 (Serth et al., 1987). Our first nonlinear example
consists of a metallurgical grinding process with 12 equa-
tions and 24 variables. Nine mass flow rates and 15 mass
fractions are created by using the correct values with addi-
tion of measurement errors from Normal and Cauchy distri-
butions. The gross errors generated are on the average 25%
of the measured variables and their amount range from 10
to 100% of the true values.
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Table 5
Performance of different methods for Example 2

MIMT H WLS CN Cauchy L Fair Logistic

Number of runs 1000 929 1100 1052 1000 1153 1000 1085
Total GE 6955 6456 7579 7415 6914 8053 6908 6824
Runs with GE 1000 929 1100 1052 999 1153 999 1084
OP (GED #1) 0.684 0.705 0.759 0.724 0.720 0.744 0.744 0.712
AVTI (GED #1) 1.364 2.118 7.645 3.371 2.255 4.692 4.193 3.253
OP (GED #2) – 0.684 0.751 0.705 0.678 0.718 0.704 0.678
AVTI (GED #2) – 1.826 7.296 3.203 1.500 4.144 2.622 2.038
OP (GED #3) – 0.700 0.338 0.689 0.702 0.707 0.650 0.670
AVTI (GED #3) – 2.713 0.882 3.281 2.421 4.846 2.499 2.699
Mean TER 0.558 0.505 0.412 0.455 0.525 0.384 0.494 0.460
Median TER 0.552 0.504 0.385 0.466 0.516 0.400 0.472 0.447

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number
(i = 1, 2, 3 for first and second cut points and rule X84, respectively).

Similar to Example 2, modified MIMT outperformed
other methods in data reconciliation. Once again, the ρ

function of Cauchy distribution shows that comparable, if
not superior results can be achieved in a single NLP solution
(see Table 6).

Example 4 (Pai and Fisher, 1988). In this example, there are
six nonlinear equality constraints, five measured variables—
all measurements are redundant—, and three observable un-
measured variables. On the average, 25% of the generated
measurements are contaminated with gross errors ranging
from 10 to 100% of the exact values reported in Pai and
Fisher (1988).

As seen in Table 7, the ρ function of Cauchy distribu-
tion results in the highest total error reduction whereas the ρ

function for contaminated Normal reaches the highest over-
all power but with more occurrences of Type I errors.

Example 5 (Swartz, 1989). Another widely used literature
example is the nonlinear heat exchanger network problem
described by Swartz (1989), and Romagnoli and Sanchez
(2000). The system of four heat exchangers is modeled
with 17 material and energy balances. The total number of

Table 6
Performance of different methods for Example 3

MIMT H WLS CN Cauchy L Fair Logistic

Number of runs 1000 1077 1076 1028 1006 1110 1000 1026
Total GE 5986 6398 6389 6172 5990 6569 5935 5546
Runs with GE 1000 1076 1075 1027 1005 1109 999 1025
OP (GED #1) 0.744 0.776 0.843 0.758 0.774 0.757 0.822 0.799
AVTI (GED #1) 1.744 2.234 8.571 4.488 2.583 3.722 4.986 3.675
OP (GED #2) – 0.760 0.836 0.742 0.733 0.722 0.779 0.764
AVTI (GED #2) – 1.964 8.172 4.330 1.809 3.149 3.102 2.362
OP (GED #3) – 0.736 0.209 0.607 0.703 0.642 0.585 0.667
AVTI (GED #3) – 1.945 0.391 2.771 1.757 2.478 1.143 1.492
Mean TER 0.622 0.585 0.423 0.450 0.587 0.475 0.552 0.539
Median TER 0.625 0.579 0.400 0.477 0.583 0.511 0.538 0.526

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number
(i = 1, 2, 3 for first and second cut points and rule X84, respectively).

variables in the system is 30, of which 16 are measured
and the rest is unmeasured. There are 10 redundant and 6
non-redundant measured variables.

Gross errors are generated only for the redundant mea-
sured variables and on the average of 25% of the time. The
magnitude of the errors range between 5 and 10 standard
deviations for the flow rates and between 5 and 30 standard
deviations for the temperature variables.

Most of the methods studied show poor data reconcilia-
tion results with close to none average total error reductions
(Table 8). The ρ function for contaminated Normal and the
“Lorentzian” function prove to be the best options for this
case.

5.2. Industrial examples

Not many industrial examples have been investigated for
the performance of different data reconciliation and gross
error detection methods. The few cases in the open liter-
ature study industrial process subsystems such as reactors
(Sanchez et al., 1996; Weiss et al., 1996), or utilize simu-
lated plant measurements (Jordache et al., 2001) instead of
real time plant data. The first industrial example involving
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Table 7
Performance of different methods for Example 4

MIMT H WLS CN Cauchy L Fair Logistic

Number of runs 1000 1058 1000 1032 1000 1000 1000 1018
Total GE 1265 1350 1265 1320 1265 1265 1265 1279
Runs with GE 771 824 771 804 771 771 771 785
OP (GED #1) 0.580 0.601 0.597 0.666 0.614 0.639 0.627 0.611
AVTI (GED #1) 0.225 0.341 0.322 0.411 0.280 0.342 0.351 0.330
OP (GED #2) – 0.504 0.578 0.588 0.469 0.526 0.515 0.494
AVTI (GED #2) – 0.278 0.271 0.315 0.136 0.186 0.159 0.161
OP (GED #3) – 0.442 0.180 0.468 0.386 0.420 0.333 0.335
AVTI (GED #3) – 0.298 0.160 0.280 0.235 0.250 0.232 0.247
Mean TER 0.538 0.321 0.493 0.369 0.542 0.478 0.526 0.511
Median TER 0.568 0.514 0.538 0.572 0.593 0.586 0.569 0.558

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number
(i = 1, 2, 3 for first and second cut points and rule X84, respectively).

real plant data and process model was given in Chen et al.
(1998).

In this subsection, the sulfuric acid process from (Chen
et al., 1998) and a new alkylation process example are in-
troduced as the first large-scale industrial examples inves-
tigated for the performance of different data reconciliation
and gross error detection methods with real plant data. For
the sulfuric acid process, the real plant design data was also
available; therefore, an analysis similar to the literature ex-
amples were performed by accepting the plant design data
as the true values of the measured variables. For these two
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Fig. 4. The contact process for sulfuric acid (Chen, 1998).

industrial examples, the bounds on variables are estimated
using available process data, process design data (only for
the sulfuric acid plant), process engineer expertise and con-
sidering conversion properties for the nonlinear steady-state
process simulation.

Example 6 (Sulfuric acid process). The sulfuric acid pro-
cess modeled, is IMC Agrico contact sulfuric acid plant
in Convent, LA, USA. The plant was designed by the
Enviro-Chem System Division of Monsanto and began op-
eration in March, 1992. It produces 3200 TPD 93 wt.%
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sulfuric acid and process steam as a byproduct. This pro-
cess incorporates many of the types of process units found
in chemical plants such as packed bed catalytic reactors,
absorption towers and heat exchanger networks, among
others. It represents the state-of-art contact sulfuric acid
technology.

In the contact process, molten sulfur is combusted with
dry air; and the reaction is exothermic and goes to com-
pletion in the sulfur furnace. The gas leaving the burner is
composed of sulfur dioxide, nitrogen, and unreacted oxygen
at approximately 1400 ◦K. Heat from this gas is recovered
in the waste heat boiler as byproduct steam. The gas enters
the packed bed catalytic reactor that consists of four beds
packed with two different types of vanadium pentoxide cat-
alyst. Here, sulfur trioxide is produced from sulfur dioxide.
The reaction is exothermic and approaches equilibrium ex-
iting each bed. Heat is removed to shift the equilibrium, and
this heat is used to produce steam. Also, the equilibrium
conversion is increased in the fourth catalyst bed by remov-
ing SO3 in the inter-pass absorption tower. In the final ab-
sorption tower, SO3 is removed from the gas with 98 wt.%
sulfuric acid. Gases exiting the final absorption tower go to
the stack with less than 400 ppm SO2 as required by regu-
lations for emissions, no more than 4.0 lb of sulfur dioxide
per ton of sulfuric acid produced. A flow diagram of the
process is given in Fig. 4.

An open form equation-based model was developed from
the process flow diagram and process design data. The
packed bed catalytic reactor was simulated with a kinetic
model developed by Harris and Norman (1972) and Richard
(1987). The process model has 43 measured variables, 732
unmeasured variables, 11 parameters and 761 linear and
nonlinear equality constraints. The 43 process measure-
ments obtained from the distributed control system included
25 temperature, 11 flowrate, 2 pressure and 5 composition
measurements. The standard deviations were determined
based on 61 plant data sets from 11 consecutive days. These
measured variables and their standard deviations were given

Table 8
Performance of different methods for Example 5

MIMT H WLS CN Cauchy L Fair Logistic

Number of runs 1000 1018 1000 1016 1000 1000 1000 1072
Total GE 2503 2529 2503 2527 2503 2503 2503 2529
Runs with GE 950 962 950 960 950 950 950 1002
OP (GED #1) 0.251 0.550 0.472 0.605 0.349 0.476 0.371 0.320
AVTI (GED #1) 0.936 0.959 2.105 0.558 0.842 0.627 1.475 1.107
OP (GED #2) – 0.538 0.450 0.599 0.323 0.457 0.303 0.282
AVTI (GED #2) – 0.917 1.925 0.531 0.587 0.421 1.010 0.816
OP (GED #3) – 0.499 0.109 0.591 0.360 0.485 0.294 0.305
AVTI (GED #3) – 0.879 0.335 0.622 0.966 0.797 1.075 1.091
Mean TER 0.027 −0.222 0.043 0.307 0.150 0.277 0.051 0.017
Median TER 0.086 0.161 0.152 0.378 0.168 0.255 0.136 0.108

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number
(i = 1, 2, 3 for first and second cut points and rule X84, respectively).

Fig. 5. Standard errors in measurements after reconciliation of the plant
data at the first steady state (for Hampel’ s redescending M-estimator the
error in the second measured value is −36 and not shown): (�) MIMT;
(•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; (×) Fair;
(�) Logistic.

(Chen, 1998). Of these 43 measurements, 14 are required
to determine the state of the process.

The performance of eight different methods for data
reconciliation along with three different gross error detec-
tion criteria were evaluated first with using the real plant
design data to generate measurement values and gross
errors. The procedure applied for the small-scale litera-
ture examples was replicated. On the average, 15% of the
simulated measurements were contaminated with gross
errors ranging between 3 and 30 standard deviations in
magnitude.

The results depicted in Table 9 shows that the ρ func-
tion of Cauchy distribution has the best data reconciliation
performance among the other seven methods. Same ρ func-
tion with the second cut point also gives one of the best
compromises between overall power and average number of
Type I errors. Unlike in the previous small-scale examples,
the X84 rule shows promising performance for most of the
methods.
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Table 9
Performance of different methods for Example 6

MIMT H WLS CN Cauchy L Fair Logistic

Number of runs 500 500 504 524 514 510 500 509
Total GE 3120 3392 3305 3346 3215 3181 3181 3026
Runs with GE 500 500 504 524 514 510 500 509
OP (GED #1) 0.841 0.863 0.884 0.912 0.889 0.904 0.907 0.896
AVTI (GED #1) 3.064 4.556 6.706 5.179 4.907 5.484 7.802 6.796
OP (GED #2) – 0.833 0.879 0.897 0.848 0.876 0.866 0.844
AVTI (GED #2) – 3.168 6.163 3.532 2.580 3.122 4.057 3.220
OP (GED #3) – 0.819 0.670 0.871 0.827 0.852 0.778 0.784
AVTI (GED #3) – 2.892 1.730 2.882 2.397 2.698 2.406 2.083
Mean TER 0.721 0.662 0.636 0.708 0.759 0.679 0.665 0.653
Median TER 0.767 0.714 0.661 0.778 0.802 0.779 0.682 0.689

GE: gross errors; OP: overall power; AVTI: average number of Type I errors; TER: total error reduction; GED #i: gross error detection criteria number
(i = 1, 2, 3 for first and second cut points and rule X84, respectively).

Table 10
Number of detected gross errors and total error reductions for the two steady states of the sulfuric acid process

MIMT H WLS CN Cauchy L Fair Logistic

Steady state 1
GED #1 13 16 15 16 16 16 16 16
GED #2 – 12 14 13 9 12 14 14
GED #3 – 7 3 5 5 6 5 4
TER 0.571 0.567 0.467 0.555 0.552 0.566 0.528 0.535

Steady state 2
GED #1 13 13 13 16 16 16 16 16
GED #2 – 12 13 13 12 12 13 13
GED #3 – 12 8 10 8 13 8 12
TER 0.573 0.569 0.476 0.573 0.569 0.577 0.546 0.555

Fig. 6. Standard errors in measurements after reconciliation of the plant data at the second steady state (once again for Hampel’ s redescending M-estimator
the error in the second measured value is −36 and not shown): (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; (×) Fair;
(�) Logistic.
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For the sulfuric acid plant, two different steady-state op-
eration points were determined from the data obtained on
6 and 10 June 1997. As can be seen in Table 10, except
the weighted least squares method, all methods performed
similarly for the data reconciliation. However, the total er-
ror reduction is 9–38% less than the average of the Monte
Carlo study results shown in Table 9. This decrease is ex-
pected since there are approximately twice as many gross
errors in the plant data. On the average, 6–7 gross errors are
created for each Monte Carlo runs, whereas the gross errors
detected by the methods requiring single NLP solution vary
between 4 and 16 for the first steady state and between 8
and 16 for the second steady state. Considering the over-
all power results in Table 9, MIMT-GED #1, CN-GED #2
and Cauchy-GED #2 methods can be used to narrow these
ranges of number of gross errors, namely 9–13 for the first
steady-state and 12–13 for the second steady state. Standard
(normalized) errors of the measurements for these two plant
operation points (Figs. 5 and 6) also show that at the first
steady state more variables fall into the critical region where
the distinction of random errors and gross errors is difficult.
The cause for the gross error detection of three tempera-
ture measurements (measurement numbers 32, 40 and 42)

Fig. 7. Sulfuric acid alkylation process (Vichailak, 1995).

is identified as the instrument measuring errors. Four flow
rates (measurement numbers 5, 6, 7 and 8) in the plant data
were detected at the same time containing gross errors since
all four flow rates were calibrated from the same measure-
ment sources, namely the discharge pressure of compres-
sor and the speed of turbine. Therefore, the measuring error
in either/both discharge pressure of the compressor or/and
speed of the turbine would cause gross errors in these four
flow rates.

Example 7 (Alkylation process). The second large-scale in-
dustrial example involves a commercial, sulfuric acid cat-
alyzed alkylation plant at the Motiva Enterprises Refinery in
Convent, LO, USA. Motiva alkylation process is a 15,000
BPD STRATCO Effluent Refrigerated Alkylation Plant. The
heart of the process is the STRATCO reactor or contac-
tor, which contacts the reactants in a high-velocity propeller
stream and removes heat from the exothermic reaction.

In the STRATCO Effluent Refrigerated Alkylation pro-
cess, light olefins (propylene, butylenes) are reacted with
isobutane in the presence of sulfuric acid catalyst to form hy-
drocarbons, mainly in the iC7 to iC8 range, called alkylate.
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Table 11
Number of detected gross errors for the three steady states of the alkylation process

MIMT H WLS CN Cauchy L Fair Logistic

Steady state 1
GED #1 23 27 32 34 34 34 44 39
GED #2 – 23 32 28 24 26 31 31
GED #3 – 27 25 27 23 27 19 31

Steady state 2
GED #1 28 34 36 39 34 39 42 43
GED #2 – 30 35 34 29 32 33 35
GED #3 – 29 25 30 29 32 26 27

Steady state 3
GED #1 26 29 33 32 29 31 41 32
GED #2 – 27 33 29 26 28 32 29
GED #3 – 30 23 30 26 30 25 28

Fig. 8. Standard errors in measurements after reconciliation of the alkylation plant data at the first steady state: (a) all errors; (b) errors between −5 and
5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; (×) Fair; (�) Logistic.
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The alkylate product is a mixture of gasoline boiling range
branched hydrocarbons which is blended with the refinery
gasoline pool to increase the gasoline octane.

A simplified process flow diagram for a generic sulfu-
ric acid alkylation process is given in Fig. 7. Specifically,
Motiva alkylation process consists of five distinct sections,
namely reaction, refrigeration, depropanizer, deisobutanizer
and saturate deisobutanizer sections. The process has four
reactor pairs and four acid settlers. In the reaction section,
there are three feed streams: the olefin feed, the isobutane
feed and the recycled olefin/isobutane mixture. The olefin
feed contains the light olefins that are reacted with isobu-
tane in the alkylation unit’ s STRATCO stirred reactors. The
isobutane stream is in excess to fully react with all of the
olefins being charged to the unit.

Fig. 9. Standard errors in measurements after reconciliation of the alkylation plant data at the second steady state: (a) all errors; (b) errors between –5
and 5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; (×) Fair; (�) Logistic.

The alkylation process model developed using process
flow diagrams, process data and process systems exper-
tise has 1579 mostly nonlinear equality and 50 inequality
constraints. The process model has 112–122 measured vari-
ables (122 for the first and second steady states, and 112 for
the third steady state investigated in this study), 1512–1522
unmeasured variables and 67 parameters. The process mea-
surements obtained from the distributed control system in-
clude 31 temperature, 30 flowrate, four pressure and 47–57
composition measurements. These measured variables, their
standard deviations and the details of the model are given in
Özyurt, Pike, Hopper, Punuru, and Yaws (2001), and Rich
et al. (2001).

For the alkylation plant, three different steady-state op-
eration points were determined from the data obtained on
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8–9 November and 6–7 December 1998. The gross errors
detected by the methods requiring single NLP solution vary
between 19 and 44 for the first, between 25 and 43 for the
second and between 23 and 41 for the third steady state
(Table 11). MIMT-GED #1 and GED #2 for all other meth-
ods suggest that the second steady state has the most gross
errors followed by the third steady-state operation point.
Considering MIMT-GED #1, H-GED #2 and Cauchy-GED
#2, the range for detected gross errors is 23–24, 28–30 and
26–27 for the first, second and third steady states, respec-
tively. Since the true values of the measured variables are
not available publicly, total error reduction, overall power
and average Type I error values can not be calculated for
the Motiva alkylation process. However, the measurements
of the variables detected for containing gross errors were
examined by the plant process engineer and found to be

Fig. 10. Standard errors in measurements after reconciliation of the alkylation plant data at the third steady state: (a) all errors; (b) errors between –5
and 5. (�) MIMT; (•) Hampel; (+) WLS; (�) CN; ( ) Cauchy; (�) Lorentzian; (×) Fair; (�) Logistic.

close to the limits or outside of the possible measurement
ranges.

Standard (normalized) errors of the measurements for the
three plant operation points are given in Figs. 8–10.

5.3. Discussion

In the previous two subsections, five small- and two
large-scale examples were investigated, considering differ-
ent data reconciliation and gross error detection methods.
The systematic approach presented is novel in the following
aspects compared to the previous studies:

a. The robust methods were tuned for the same efficiency
values, which is required for a reasonable comparison
between different methods.
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b. The tuning of the ρ functions for data reconciliation and
the determination of gross error detection criteria were
done separately.

c. The assumption that the random errors are from a Nor-
mal distribution was relaxed by generating a mixture of
Normal and Cauchy random variables for simulated mea-
surements.

d. In all examples, most of the eight methods were tested
with the same simulated measurements and gross errors.

e. Two large-scale industrial systems were investigated with
real plant data.

6. Conclusions

Data reconciliation is an important step in real time
on-line optimization of a plant. It adjusts the process data
to satisfy the constraints of the system model and provides
estimates for unmeasured variables and process parameters,
which are used in the consecutive economic optimization
step. In this study, the focus has been on the simultaneous
data reconciliation and gross error detection strategies to
improve this initial step in on-line optimization. To this end,
six different methods derived from robust statistics have
been investigated along with weighted least squares and a
modified version of MIMT for nonlinear models. Unlike
previous studies, special attention was given to the concept
of tuning the ρ functions to obtain the same efficiency at
the ideal condition. This proves necessary for a comparative
study of different methods. This tuning inevitably affects
the relative shape of the influence functions for the ρ func-
tions. Using these individual influence functions, several cut
points can be defined as prospective gross error detection
criterion. Even for ρ functions which do not have cut points,
such as Fair function and ρ function of Logistic distribu-
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Fig. 11. Box-plots showing mean and median total error reduction values of different methods for the six examples ((•) outlier).

tion, similar gross error detection criteria can be proposed
borrowing the cut points of other ρ functions. Moreover, an
outlier rejection rule (X84) adopted from univariate robust
estimation and depending solely on the observation of the
residuals in the data reconciliation solution, is introduced.

The evaluation of the performance of a total of eight
methods is undertaken using five small-scale examples from
the literature and two cases involving industrial plants with
real process data. The Monte Carlo study shows that the
robust approaches for the simultaneous data reconciliation
and gross error detection of chemical processes can provide
similar or better results compared to a sequential method,
with a single (two for Hampel’ s redescending M-estimator)
solution of the NLP.

A box-plot of the six observations for the average and
median total error reduction values (Fig. 11) reveals that on
the average one can expect mean TER values between 0.4
and 0.8 with similar variability among different methods.
The median TER values for MIMT and ρ function of the
Cauchy distribution are above 0.6 for nearly half of the cases,
proving them as good data reconciliation methods.

The overall power of the first and second gross error de-
tection criterion was higher than 0.7 for half of the cases
investigated (Fig. 12). Hampel’ s redescending M-estimator,
ρ functions for Cauchy and Logistic distributions along with
the modified MIMT method achieved this performance with
lower variability in the average number of Type I errors
(Fig. 13). In general, the second and third gross error detec-
tion criteria reduced the average number of wrong identifi-
cations.

The guidelines compiled from the results of six different
examples facilitate an intelligent selection of the ρ function
and gross error detection criterion by comparing the median
and variability of each method. Future work will expand the
current analysis to include the determination of the gross
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error detection criteria based on estimation efficiency and
the breakdown point analysis for different data reconciliation
methods. Moreover, the methodologies presented herein will
be implemented in a future version of the Advanced Process
Analysis System (APAS), a tool to perform comprehensive
and in-depth evaluations of economic, environmental, safety
and hazard analysis projects (Telang et al., 1999).
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Appendix A

For a set of one-dimensional observations X1, . . . , Xn

which are independent and identically distributed, a maxi-
mum likelihood type estimate Tn = Tn(X1, . . . , Xn) is de-
fined (Hampel et al., 1986; Huber, 1981; Rey, 1983) by a
minimization problem

min
Tn

n∑
i=1

ρ(Xi; Tn) (A.1)

As an example, assume that X1, . . . , Xn are observations
from Normal distribution with the probability density func-
tion φ(x) = (2π)−1/2 exp(−1/2(x − θ)2), i.e. variance of 1
and mean θ. The arithmetic mean of the observations (Tn =
(1/n)

∑n
i=1Xi) is a well-known estimate for the population

mean, and is defined by the following

min
Tn

n∑
i=1

− ln

[
(2π)−1/2 exp

(
−1

2
(Xi − Tn)

2
)]

= min
Tn

n∑
i=1

1

2
(Xi − Tn)

2 (A.2)

or equivalently
n∑

i=1

(Xi − Tn) = 0 ⇔ Tn = 1

n

n∑
i=1

Xi (A.3)

Similar to the above example, if the first derivative of ρ(Xi,
Tn) exists, Tn can be defined by the implicit equation
n∑

i=1

ψ(Xi; Tn) = 0 (A.4)

where
∂

∂Tn

ρ(Xi; Tn) = ψ(Xi; Tn) (A.5)

If Fn is the empirical cumulative distribution function gen-
erated by the observations X1, . . . , Xn, then Tn in (A.4) can
also be written as T(Fn), where T is the following functional∫

ψ(x; T(F)) dF = 0 (A.6)

for all distributions F for which the integral is defined
(Hampel et al., 1986).

To evaluate the influence function of an M-estimate, re-
place F with Ft = (1 − t)F + t∆x in (A.6) and take the
derivative with respect to t at t = 0, since the influence
function IF is defined as

IF(x, T, F) = lim
t→0

T(Ft) − T(F )

t
= ∂

∂t
[T(Ft)]|t=0 (A.7)

Here, ∆x is the probability measure, which puts mass 1 at
the point x.

∂

∂t

∫
ψ(x, T((1 − t)F + t∆x)) d[(1 − t)F + t∆x]|t=0 = 0

(A.8)

Changing the order of the integration and differentiation,
gives∫

ψ(x, T((1 − t)F + t+x)) d(+x − F )|t=0

+
∫

∂

∂T(Ft)
ψ(x, T((1 − t)F + t∆x))

× |t=0
∂

∂t
[T(Ft)]|t=0dFt|t=0 = 0 (A.9)

Simplifying gives∫
ψ(x, T(F )) d(∆x − F ) + ∂

∂t
[T(Ft)]|t=0

×
∫

∂

∂T(F )
ψ(x, T(F )) dF = 0 (A.10)

Making use of (A.6) and (A.7), gives

IF(x, T, F ) = ψ(x, T(F ))

− ∫ (∂/(∂T(F )))ψ(x, T(F )) dF
(A.11)

provided that the denominator is nonzero. Therefore, the
influence function IF(x, T, F) is proportional to ψ(x, T(F)),
i.e.

IF(x, T, F ) ∝ ∂

∂Tn

ρ(Xi, Tn) (A.12)
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